Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System

نویسنده

  • Peggy S. Williams
چکیده

The NASA F-15 Intelligent Flight Control System project team has developed a series of flight control concepts designed to demonstrate the benefits of a neural network-based adaptive controller. The objective of the team is to develop and flight-test control systems that use neural network technology to optimize the performance of the aircraft under nominal conditions as well as stabilize the aircraft under failure conditions. Failure conditions include locked or failed control surfaces as well as unforeseen damage that might occur to the aircraft in flight. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to the baseline aerodynamic derivatives in flight. This set of open-loop flight tests was performed in preparation for a future phase of flights in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed – a pitch frequency sweep and an automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. An examination of flight data shows that addition of the flight-identified aerodynamic derivative increments into the simulation improved the pitch handling qualities of the aircraft.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System

The NASA F-15 Intelligent Flight Control System project team developed a series of flight control concepts designed to demonstrate neural network-based adaptive controller benefits, with the objective to develop and flight-test control systems using neural network technology to optimize aircraft performance under nominal conditions and stabilize the aircraft under failure conditions. This repor...

متن کامل

Adaptive Quaternion Attitude Control of Aerodynamic Flight Control Vehicles

Conventional quaternion based methods have been extensively employed for spacecraft attitude control where the aerodynamic forces can be neglected. In the presence of aerodynamic forces, the flight attitude control is more complicated due to aerodynamic moments and inertia uncertainties. In this paper, a robust nero-adaptive quat...

متن کامل

Intelligent Aerodynamic/Propulsion Flight Control For Flight Safety: A Nonlinear Adaptive Approach

This paper presents an intelligent fault tolerant flight control system that blends aerodynamic and propulsion actuation for safe flight operation in the presence of actuator failures. Fault tolerance is obtained by a nonlinear adaptive control strategy based on on-line learning neural networks and actuator reallocation scheme. The adaptive control block incorporates a recently developed techni...

متن کامل

Flight Test Validation of a Neural Network based Long Term Learning Adaptive Flight Controller

The purpose of this paper is to present and analyze flight test results of a Long Term Learning Adaptive Flight Controller implemented on a rotorcraft and a fixed wing Unmanned Aerial Vehicle. The adaptive control architecture used is based on a proven Model Reference Adaptive Control (MRAC) architecture employing a Neural Network as the adaptive element. The method employed for training the Ne...

متن کامل

Neural Network Based System Identification for Autonomous Flight of an Eagle Helicopter

Neural Network Identification (NNID) for modeling the dynamics of a miniature Eagle helicopter is presented in this paper. Off-line and on-line identification is carried out for both coupled and decoupled dynamics of the helicopter from the flight test data. For both the cases, identification results and the error statistics are provided. The off-line identification performs better due to suffi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004